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The following describes a proposed approach to account for the equifinality of solutions that result from
comparing observations to flow simulations when using realizations of geostatistical models. We intro-
duce hydrogeological acceptance probability to estimate the propensity of a geostatistical model to pro-
duce acceptable realizations with respect to the consistency of their simulations with observations. The
estimation of hydrogeological acceptance probability is equivalent to the calculation of the sample mean
of a Bernoulli distribution. This allows the estimation of the acceptance probability to be preemptively
terminated based on the current estimate and subject to the desired confidence level and interval length.
We propose a composite uncertainty analysis of the hydrogeological heterogeneity utilizing acceptable
realizations from multiple geostatistical models collected during the estimation of their acceptance prob-
ability. In the case of a non-fuzzy definition of realization acceptance, this produces a facies probability
map. If the definition of realization acceptance is imprecise, the analysis yields upper and lower bounds
on the facies probability map in the form of facies plausibility and belief maps, respectively. These maps
can provide indications of the information content of the data and provide guidance for the collection of
additional data.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The collection of a sufficient number of direct observations to
adequately characterize hydrogeological heterogeneity is a goal
that is approached asymptotically at best. Use of limited observa-
tions is then required to determine where additional information
should be collected, or to support decisions that cannot wait for
additional data collection. This has led to approaches to infer
hydrogeological heterogeneity on the basis of comparisons be-
tween output of flow and transport simulators and available obser-
vations. Typically, the only available information regarding the
hydrogeological heterogeneity of a site are sparsely located direct
point estimates and indirect (e.g. water level and/or contaminant
concentration) observations. Considering reducible (epistemic)
and irreducible (aleatoric) uncertainty [1], multiple models of het-
erogeneity will produce acceptable simulations of the system
when compared to the available observations [2]. This situation
has been called the equifinality of solutions, and can be due to mul-
tiple discrete acceptable solutions and/or a region of acceptable
solutions (i.e. an area of attraction in a response surface with an
ill-defined optimal solution). It is often the case that the prior
information is not sufficient to reduce the set of solutions to a
ll rights reserved.
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single solution, especially in the case of stochastic models, where
each parameter set characterizes an infinite set of solutions.

Well known approaches to account for the equifinality of solu-
tions (i.e. multiple equally acceptable simulations of a system [3])
include maximum likelihood Bayesian model averaging (MLBMA)
[4], generalized likelihood uncertainty estimation (GLUE) [2], and
the Bayesian approach of Gaganis and Smith [5]. MLBMA provides
a relatively efficient approach to rank calibrated models; however,
acceptable sub-optimal solutions may be ignored. GLUE provides a
general framework for evaluating model uncertainty given a Monte
Carlo sampling and parameters of a deterministic model (e.g.
hydraulic conductivities of a distributed model). The Bayesian ap-
proach of Gaganis and Smith [5], also requiring a Monte Carlo sam-
pling, provides a formal Bayesian approach to estimate model
uncertainty. An approach by Rojas et al. [6] combines GLUE and
MLBMA, utilizing the statistical approach of MLBMA without ignor-
ing suboptimal solutions.

This paper presents an approach to evaluate hydrogeological
heterogeneity uncertainty, including imprecision in the definition
of an acceptable solution, utilizing a preemptive sampling scheme
based on the estimation of hydrogeological acceptance probability.
The acceptance probability has some similarities to the posterior
probabilistic weight associated with Bayesian analyses, except that
it is designed to evaluate the propensity of stochastic models to
generate realizations consistent with observations, and in the
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current methodology, does not intend to provide probabilistic
evidence that a stochastic model represents the ‘truth’. In the cur-
rent methodology, its function is to define the termination of a geo-
statistical sampling based on the desired confidence and interval
length. Except for some philosophical similarities to approaches
developed in hydrology to deal with equifinality (e.g. [2]), the ap-
proach is unrelated and developed specifically for stochastic
models.

For clarity, we will refer to a geostatistical functional form as a
geostatistical framework, while a particular instance of a geostatis-
tical framework, defined by the specification of its parameters, as a
geostatistical model. We will refer to a particular instance of a geo-
statistical model, usually specified by the designation of a random
seed, as a realization of the geostatistical model. A geostatistical
model defines an infinite set of equally-probable realizations with
respect to the statistical characteristics of the spatial variation
(geostatistically-equally-probable). Realizations can be condi-
tioned to honor values at particular locations while maintaining
the global statistics of the field by using conditional simulation
[7]. Various geostatistical frameworks have been developed to
characterize and evaluate the structure of aquifer heterogeneity,
including variogram [7], multiple-point [8], and Markov-chain geo-
statistics [9]. While alternatives to geostatistical modeling of het-
erogeneity exist as well [10–14], we explore a geostatistical
approach here. We use a Markov-chain geostatistical model condi-
tioning the hydraulic conductivity heterogeneity at the observa-
tion wells. These conditioning data could be available from
pumping tests. The use of a Markov-chain geostatistical model is
merely a selection, and is not required by the method, which could
incorporate results from many models of heterogeneity in a single
analysis.

Many of the current geostatistical inverse approaches utilized in
hydrogeological studies explore uncertainty by evaluating residu-
als between simulated and observed values (e.g. water levels,
contaminant concentrations) produced using geostatistical realiza-
tions from a single geostatistical framework that is inferred from
the observed or assumed hydrogeology of a site (e.g. [15–19]).
These approaches provide unrealistic estimates of uncertainty in
cases where an appropriate statistical model of the heterogeneity
is uncertain, a common scenario in hydrogeological studies with
sparse data. Pardo-Igùzquiza et al. [20] quantify uncertainty in
estimating semivariogram parameters from empirical semivario-
grams using a maximum likelihood estimation, and demonstrate
how this uncertainty can be propagated to predictions of head.
Nowak et al. [21] developed an approach for geostatistical design
that they refer to as continuous Bayesian model averaging consid-
ering uncertainty in parameters of the Matèrn family of covariance
functions. Other approaches evaluate the consistency of geostatis-
tical models (conceptual model of the statistical properties of the
heterogeneity) with observations in a statistical sense [22–24].
These approaches assume that the statistical characteristics of
the ‘true’ heterogeneity can be inferred by the observed hydrogeol-
ogy (hydrogeological observations from a single realization of the
‘true’ geostatistical model).

In general, water pressure residuals will vary substantially be-
tween realizations from the same geostatistical model, indicating
that geostatistically-equally-probable realizations are not neces-
sarily equally-consistent with respect to hydraulic observations.
Conversely, it is also possible that realizations from various alter-
native geostatistical models will produce similar hydraulic
responses. Therefore, evaluating modeling residuals in the
unavoidable presence of uncertainty means that multiple geosta-
tistical models will produce realizations resulting in acceptable
simulations of the system given the available observations. As a re-
sult, the identification of the geostatistical model that is the most
consistent with observations in a statistical sense does not neces-
sarily ensure that the true geostatistical model has been identified.
This is an example of asking a question that cannot be answered
with the information provided. The question that can be answered
is what is the propensity of a geostatistical model to produce real-
izations resulting in simulated values consistent with observations
given the ambient uncertainty. In the process of answering this
question, a set of acceptable realizations can be collected. Combin-
ing acceptable sets of realizations from multiple models provides a
basis for a composite uncertainty analysis, incorporating accept-
able features from multiple models. This provides the possibility
that the uncertainty analysis may uncover features not present in
the individual models, but present in the composite uncertainty
analysis.

One can evaluate stochastic realizations by how consistent their
simulated values are to observed values. Researchers have pro-
posed many functional forms to accomplish this [2], with perhaps
the most common being the sum of squared residuals (SSR). Using
a ranking suited to a particular application, criteria for the accepti-
bility of a realization can be established. A higher acceptance prob-
ability of a geostatistical model indicates its propensity to produce
realizations resulting in simulated water levels (heads) consistent
with observations accounting for measurement and conceptual
uncertainty.

While the propensity of a geostatistical model to produce
acceptable realizations does provide some indication that the mod-
el defines the characteristics of the ‘true’ heterogeneity, choosing
the geostatistical model with the highest acceptance probability
as the ‘truth’ would be a naive assumption. Basing an uncertainty
analysis on such an assumption is ill-advised as the potential that
the ‘true’ heterogeneity is most similar to an extreme realization of
a geostatistical model with low acceptance probability always ex-
ists. Therefore, we advocate developing a composite uncertainty
analysis based on acceptable realizations from multiple models,
potentially from multiple geostatistical frameworks.

The fact that multiple geostatistical models can produce realiza-
tions with indistinguishable acceptability indicates that an uncer-
tainty analysis must consider more than just the geostatistical
model with the highest acceptance probability. A composite uncer-
tainty analysis would require that all possible geostatistical models
be evaluated. Of course, in practice this is typically not feasible.
Therefore, such uncertainty analyses are relative, conditional on
the considered geostatistical frameworks. We propose that the rela-
tive uncertainty associated with hydrogeological heterogeneity can
be evaluated by computing the acceptance probability of a sampling
of geostatistical models from one or several geostatistical frame-
works that incorporate all acceptable realizations. Such an analysis
can be utilized to produce facies probability maps of hydrogeological
properties, providing indications of the information content of the
data and providing guidance for siting further investigations.

As the distinction between an acceptable and unacceptable
realization with respect to epistemic uncertainty will undoubtedly
be imprecise, the use of fuzzy sets [25,26] is appropriate. Fuzzy set
theory allows the assignment of grades of membership to elements
and use of fuzzy set operations in place of classical set operations
[27]. Therefore, fuzzy sets allow an expert to assign grades of mem-
bership to the acceptable and unacceptable sets of realizations.
Fuzzy sets can also be constructed by integrating information from
multiple experts [25]. Previous approaches using fuzzy sets in a
hydrological context include mapping flood propagation model
outputs to likelihoods in order to evaluate roughness coefficient
uncertainty within the GLUE framework [28]; mapping imprecise
remotely sensed observations of energy partition variability into
model functional types of evapotranspiration [29]; approximation
of the unsaturated Darcy law using a fuzzy rule-based model [30];
and a fuzzy least-squares regression approach to the Cooper–Jacob
method [31].
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Considering a dual relationship between the membership func-
tions for the acceptable and unacceptable sets (lA = 1 � lU, l 2
[0,1], where lA and lU are the membership functions for the
acceptable and unacceptable sets, respectively), implies that there
is a lack of conflict in the information. As a result, it is possible to
estimate the acceptance probability of a geostatistical model while
using an imprecise definition of acceptance.

An uncertainty analysis of the hydrogeological heterogeneity in
the case of an imprecise definition of acceptibility will produce
upper and lower bounds on the facies probability map. These
upper and lower probability bounds are consistent with Demp-
ster–Shafer theory (DST) [32], and are referred to as plausibility
and belief measures, respectively. The machinery of interest from
DST for our methodology is the construct of an upper and lower
probability, which can be attributed to Dempster [33]. Recently,
Mathon et al. [34] demonstrated the use of DST to account for epi-
stemic and aleatoric uncertainty of permeability measurements. In
the limiting case where the fuzzy membership function becomes
an indicator function, the gap between the belief and plausibility
measures, defining the span of possible probability distributions,
collapses to a single probability distribution.

This paper proposes the concept of hydrogeological acceptance
probability of a geostatistical model to allow for an imprecise def-
inition of realization acceptance, and demonstrates its ability to
characterize the hydraulic conductivity heterogeneity and associ-
ated uncertainty. The following sections demonstrate the estima-
tion of acceptance probability, mapping of acceptance
probabilities over a geostatistical parameter space, and the map-
ping of facies probabilities, beliefs and plausibilities based on dis-
crete samplings of geostatistical parameters (models).
Fig. 1. Membership functions for the set of acceptable (lA) and unacceptable (lU)
realizations.
2. Estimating hydrogeologic acceptance probability

The concept of the hydrogeological acceptance probability of a
geostatistical model incorporates aleatoric and epistemic uncer-
tainty. In the present case, the source of aleatoric uncertainty (i.e.
uncertainty dependent on a random event and irreducible without
the improvement of measuring techniques and/or collection of
new measurements [1]) is the measurement of the water levels.
The source of epistemic uncertainty (i.e. uncertainty related
to the lack of information about the system) is in the definition
of the conceptual model (e.g. restricted to the hydrogeological
structure here). In the following, we define criteria for determining
the membership of a realization in the set of acceptable realiza-
tions. It should be realized that other criteria could be defined
for other applications to fit a particular scenario.

We define an acceptance metric (U) as

UðhÞ ¼
XNo

i¼1

ð�hi;max � ĥið�hÞÞ2 if ĥiðhÞ > �hi;max;

ð�hi;min � ĥiðhÞÞ2 if ĥiðhÞ < �hi;min;

0 if �hi;min 6 ĥiðhÞ 6 �hi;max;

8>><
>>: ð1Þ

where h is a vector of parameters defining the realization (geostatis-
tical model parameters and random seed), No is the number of
observations, ĥi(h) is the ith simulated value given h, and �hi;max

and �hi;min define an interval of values for the ith simulated value
consistent with measurement uncertainty determined by the reso-
lution and precision of the measuring instruments (e.g. pressure
transducers). While methods to model measurement error using
an unknown statistical parameter have been developed for various
inverse approaches, the approach in Eq. (1) is deemed appropriate
for this sampling scheme. For the remainder of the paper, the argu-
ment of U(h) will be dropped for notational convenience.

Accounting for epistemic uncertainty requires expert opinion
of values considered to be consistent with observations given
uncertainty in the conceptual model. In general, the fuzzy mem-
bership function defining membership in the set of acceptable real-
izations lA can be expressed as

lAðUÞ ¼
1 if U 6 U1;

0 if U P U2;

f ðUÞ if U1 < U < U2 where f ðUÞ : U! ð0;1Þ;

8><
>: ð2Þ

where U1 and U2 define the limits of maximum and minimum
membership, respectively, in the acceptable set of realizations.
f(U) defines the grades of membership between the maximum
and minimum and is required to decrease monotonically. For dem-
onstration purposes, f(U) is assumed to be a linear function here,
defined as

f ðUÞ ¼ U2 �U
U2 �U1

; U1 < U < U2: ð3Þ

Other possible functional forms for f(U) include Gaussian, exponen-
tial, and step functions [25]. In the special case where U1 = U2, Eq.
(2) reduces to an indicator function vA(U) as

vAðUÞ ¼
1 if U 6 Uc;

0 if U > Uc;

�
ð4Þ

producing sets consistent with classical set theory [26], where
Uc = U1 = U2 is used to denote the cutoff of acceptibility.

Selection of Uc or U1, U2, and f(U) will require the value judg-
ment of an expert and may entail some investigation. This process
is analogous to the selection of a likelihood function in a Bayesian
analyses, however, with less restrictions and assumptions.

Considering a non-fuzzy definition of an acceptable realization
(Eq. (4)), the acceptance probability pA of a geostatistical model
can be estimated as the sample mean of a Bernoulli distribution as

p̂A ¼
1
Nr

XNr

i¼1

vAðUiÞ; ð5Þ

where Nr is the total number of realizations and Ui = U(hi). Assum-
ing that membership in the set of unacceptable realizations U, de-
noted by lU, has a dual relationship to lA (i.e. lA = 1 � lU),
indicating that the information is not conflicting [26]) (see Fig. 1),
a similar equation can be used in the fuzzy case as

p̂A ¼
1
Nr

XNr

i¼1

lAðUiÞ: ð6Þ

Considering Eq. (6), it can be demonstrated that the information is
not conflicting by verifying that p̂A þ p̂U ¼ 1ðp̂U ¼ 1=n

Pn
i¼1lUðUiÞÞ,

which is consistent with the axioms of probability theory.
The two-sided confidence interval length L for the probability of

a discrete random variable can be approximated using the current
estimate as

L ¼ 2za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂Að1� p̂AÞ

n

r
; ð7Þ
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where za/2 is the z-score at a/2 where (1 � a)100% is the confidence
level [35, page 485]. By inspecting Eq. (7), it is apparent that L de-
pends on the current value of p̂A. An equation defining the required
sample size to estimate p̂A within L at the (1 � a)100% confidence
level can be determined by solving Eq. (7) for n as

n ¼
4z2

a=2p̂Að1� p̂AÞ
L2 : ð8Þ

By considering Eq. (8) and inspecting Fig. 2, it is apparent that the
largest number of samples will be required when p̂A ¼ 0:5. There-
fore, estimation of small or large values of p̂A will be less computa-
tionally intensive and/or time consuming at a particular confidence
and interval length. This property is used to preemptively terminate
the estimation of an acceptance probability at a specified confi-
dence level ((1 � a)100)% and interval length (L) based on the cur-
rent value of p̂A. This provides a significant reduction in forward
model runs required for the estimation of high or low acceptance
probabilities. Values of p̂A provide a statistic describing the propen-
sity of geostatistical models to produce acceptable realizations.

Performing a multi-realization sampling to estimate acceptance
probability is distinct from performing a multi-realization sam-
pling with the intent to estimate convergent statistics of state vari-
ables, and does not imply that the statistical moments of state
variables will be converged at a specified confidence and interval
length of the acceptance probability estimate.

3. Mapping hydrogeological uncertainty using a set of
acceptable realizations

The estimation of the acceptance probability of a geostatistical
model produces a set of realizations deemed acceptably consistent
with observations. The hydrogeological uncertainty within the
context of this geostatistical model can be evaluated from this
set. This analysis of uncertainty can be extended indefinitely by
considering the union of acceptable sets from multiple geostatisti-
cal models as

[Nm

i¼1

Ai; ð9Þ

where Nm is the number of geostatistical models and Ai is the
acceptable set of realizations from the ith geostatistical model.
The geostatistical models are not limited to a particular geostatisti-
cal framework. For instance, it would be possible to combine
acceptable sets from Markov-chain [9] and indicator kriging [7]
geostatistical frameworks in a single analysis.

In the following, we consider the case of geologic units with dis-
tinct hydraulic conductivities. A similar analysis can be performed
for continuous hydraulic conductivities using discretized intervals.
If A is considered non-fuzzy (Eq. (4)), it is possible to map the prob-
ability of a particular geologic unit (facies) by approximating the
one-location marginal probabilities at each location as
Fig. 2. Values of p̂Að1� p̂AÞ as a function of p̂A demonstrating the influence of p̂A on
the calculation of the sample size n (Eq. (8)).
p̂ðl; xÞ ¼
PNr

i¼1Il;iðxÞvAðUiÞPNr
i¼1vAðUiÞ

; ð10Þ

where p̂ðl; xÞ denotes the probability of the lth facies at location x,
Il,i(x) is the lth facies indicator function at location x associated with
the ith realization, and Nr is the total number of realizations (includ-
ing acceptable and unacceptable realizations) from all geostatistical
models from all geostatistical frameworks included in the analysis.
By filtering the realizations to the union of sets of acceptable real-
izations (Eq. (9)), Eq. (10) can be simplified as

p̂ðl; xÞ ¼ 1
NA

XNA

i¼1

Il;iðxÞ; ð11Þ

where i is now an index for the collection of acceptable realizations
and NA is the number of realizations in the union of acceptable sets
ðNA ¼

PNr
i¼1vAðUiÞÞ. The facies indicator functions are defined as

Il;iðxÞ ¼
1 if unit l occurs at location x in realization i;

0 otherwise:

�
ð12Þ

A facies probability map for the lth facies can be generated by map-
ping p(l;x) for all x.

If A is considered a fuzzy set (Eq. (2)), the calculation of the one-
location marginal probability is not valid. In this case, Eq. (11) must
be generalized by transferring the information about the accep-
tance of a realization to a measure that a facies exists at a location
as

mðl; xÞ ¼ 1
NA

XNA

i¼1

Il;iðxÞlAðUiÞ; ð13Þ

where m(l;x) is a basic probability assignment (bpa) consistent with
Dempster–Shafer theory (DST) [32]. DST provides a generalization
of probability theory, relaxing certain axiomatic constraints to al-
low for the representation of conflicting information.

According to DST, lower and upper bounds on a cumulative dis-
tribution function (CDF) can be defined as belief (Bel) and plausibil-
ity (Pl) measures, respectively. The belief and plausibility of an
arbitrary event D can be defined a

BelðDÞ ¼
X

EjE # D

mðEÞ ð14Þ

and

PlðDÞ ¼
X

EjD\E–£

mðEÞ; ð15Þ

respectively. The belief that facies l exists at location x has been de-
rived here as

Belðl; xÞ ¼ mðl; xÞ ¼ 1
NA

XNA

i¼1

Il;iðxÞlAðUiÞ: ð16Þ

According to the duality of belief and plausibility measures [26], the
plausibility that facies l exists at x can be defined as

Plðl; xÞ ¼ 1� Belð�l; xÞ: ð17Þ

It is demonstrated in Appendix A that the derived bpa (Eq. (13)), be-
lief measure (Eq. (16)), and plausibility measure (Eq. (17)) satisfy
the axiomatic properties defined by DST.

Mapping Eqs. (16) and (17) for all x provides upper and lower
bounds for the facies probability map in the form of plausibility
and belief maps, respectively. The gap between the plausibility
and belief measures indicates the range of possible values for the fa-
cies probability, indicating the epistemic uncertainty in defining the
acceptability of a realization. In the case where U1 = U2, the gap be-



68 D.R. Harp, V.V. Vesselinov / Advances in Water Resources 36 (2012) 64–74
tween the plausibility and belief collapses to the facies probability
map.

As the acceptance information (degree of membership) is ap-
plied to the entire realization, and not to individual cells (locations)
within the realization, the gap between the belief and plausibility
will be constant over the model domain, with its magnitude
dependent on the imprecision in the definition of realization
acceptance. In other words, the conflict in the information due to
imprecision in the definition of the acceptance metric is constant
over the model domain (Pl(l;x) � Bel(l;x) = c, c P 0).

4. Synthetic case study

The use of acceptance probability estimation is demonstrated
on a numerically-generated synthetic pumping test where the
‘true’ hydrogeological property structure, boundary conditions,
and initial conditions are specified. In this way, the feasibility of
using acceptance probability estimation to perform an uncertainty
analysis of the hydrogeological heterogeneity can be evaluated.
The model (presented in Fig. 3) is a 2-dimensional representation
of the horizontal plane of an aquifer composed of 2 distinct geo-
logic units (facies) with uniform hydraulic conductivities (i.e.
K1 = 10�2 m/s, K2 = 10�5 m/s). The ‘true’ mapping of the facies is
generated as a realization of a Markov-chain geostatistical model
[9,36] with facies volumetric proportions of p1 = p2 = 0.5 and mean
facies lengths of �l1;x ¼ �l1;y ¼ 20 m where the numerical subscripts
indicate the facies and letter subscripts indicate direction (refer
to [9,36,24] for detailed discussions of Markov-chain geostatistics).

The flow simulations are performed on an orthogonal grid with
1 m spacing (10,000 nodes) using FEHM [37]. The geostatistical grid
cells are concurrent with the flow simulation grid cells. An ambient
gradient of 0.02 m/m is induced in the positive x-direction by impos-
ing constant head boundaries of 100 m and 98 m at nodes along lines
x = 0 m and 100 m, respectively. A pumping well is located in the
approximate center of the model. The pumping well discharges at
a constant rate of 5 kg/s beginning at t = 0 s. Fifteen observation
wells are located throughout the model domain (black x’s in
Fig. 3). For demonstration purposes, it is assumed that the hydraulic
conductivity is perfectly known at the pumping and observation
wells and these values are used as conditioning points for the simu-
lation of the hydraulic conductivity fields (realizations). Head mea-
surements are collected at the pumping and observation wells at 11
times (t = 0.01,0.02,0.04,0.08,0.16,0.32, 0.64,1.28,2.56,5.12 and
10.0 days), resulting in 176 (16 wells � 11 times) observations.
Gaussian noise with a mean of zero and standard deviation of
Fig. 3. Map of horizontal plane of synthetic model. Colored regions indicate
geologic units with distinct hydraulic conductivities. Black x’s indicate locations of
water-level monitoring wells (15). The pumping well is indicated by a black square
with its associated pumping rate at the approximate center of the model domain.
Boundary conditions are noted on the four sides of the map.
2.5 � 10�5 m was added to the simulated values for the ‘true’ case
to produce observed values with measurement error.

5. Results and discussion

This paper introduces the application of acceptance probability
estimation to perform structural hydrogeological uncertainty anal-
ysis with limited pressure and hydrogeologic observations. In
order to investigate the acceptance probability of various geostatis-
tical models within a Markov-chain geostatistical framework, dis-
crete geostatistical parameter sets are evaluated, where each
parameter set defines a geostatistical model. The parameters are
the mean facies lengths in the x and y directions,�lx and�ly [9], respec-
tively. A matrix of parameter combinations are considered, varying
both parameters from 10 to 50 m at 5 m increments (81 parameter
sets), where �lx ¼ �ly ¼ 20 m are the parameters used to generate the
‘true’ realization (Gaussian noise with zero mean and standard devi-
ation equal to 2.5 � 10�5 m is added to the simulated values from
the ‘true’ realization to produce observed values with measurement
error). While generation of the ‘true’ mapping of the facies using the
same geostatistical framework as used in the inversion presents an
idealized case, in practice, there would be no restriction to the num-
ber or type of geostatistical frameworks that could be included in a
single analysis (refer to Eq. 9 for details).

It is important to note that these stochastic geostatistical
parameters do not define the ‘true’ spatial distribution of hydraulic
conductivity, but do define the geostatistical model used to gener-
ate the ‘true’ realization of hydraulic conductivity. Other sampling
schemes could have been chosen (e.g. Monte Carlo, Markov chain
Monte Carlo, Latin Hypercube Sampling) in order to search the
parameter space more thoroughly. This demonstration uses dis-
crete parameter sets in order to decrease the computational
requirements.

The results are presented stepwise to illustrate the accumula-
tion of information through the sampling approach. It includes
(1) example residual analyses using realizations from the ‘true’
geostatistical model (Fig. 4); (2) example calculations of accep-
tance probability estimation for three geostatistical models
(Fig. 5); (3) mapping of estimated acceptance probabilities for all
81 geostatistical models at three interval lengths (Fig. 6) and three
realization acceptance cutoff values (Fig. 7); (4) mappings of facies
probability from the union of acceptable realizations collected dur-
ing the estimation of the acceptance probability using non-fuzzy
definitions of realization acceptance at three interval lengths
(Fig. 8) and at four realization acceptance cutoff values (Fig. 9);
and (5) facies plausibility and belief maps generated from the un-
ion of acceptable realizations collected during the estimation of
acceptance probability using fuzzy definitions of realization accep-
tance (Fig. 10). In all cases, a value of 0.015 m is added and sub-
tracted from the observed value to obtain values for �hmax and
�hmin, respectively. These bounds for measurement error are signif-
icantly larger than the Gaussian noise added to the ‘true’ simulated
values (zero mean, standard deviation 2.5 � 10�5 m), providing a
sufficiently large range of values considered consistent with re-
spect to measurement error.

Fig. 4 presents plots of simulated versus observed heads gener-
ated from geostatistical realizations of the ‘true’ geostatistical
model. These plots illustrate the extreme variability possible in
the hydraulic response of realizations from a geostatistical model.
In order to demonstrate that even realizations of the ‘true’ geosta-
tistical model have significant hydrogeologic variability, the simu-
lated values are from different realizations generated by the ‘true’
geostatistical model ð�lx ¼ �ly ¼ 20 mÞ. From Fig. 4, it is apparent that
as the consistency of the realizations to the observed hydraulic
response decreases (U increases), initially there is increased scatter
both above and below the 1:1 line. However, in the plot in the low-



Fig. 4. Plots of simulated heads for realizations from the geostatistical model used to generate the ‘true’ heterogeneity versus observed heads from the ‘true’ heterogeneity.
Cases with a range of acceptance metric U values are presented and noted on each plot. The diagonal line has a 1:1 slope. Note differences in scale between plots.

Fig. 5. Acceptance metric values for realizations from three geostatistical models. The horizontal line at U = 50 indicates the values of Uc used to produce the samples of
realizations (a = 0.05, L = 0.05). The geostatistical models and resulting acceptance probabilities (rounded to their specified precision) are from the geostatistical model (a)
used to generate the ‘true’ realization p̂A ¼ 0:25, (b) with highest acceptance probability p̂A ¼ 0:35, and (c) with lowest acceptance probability p̂A ¼ 0:00.

D.R. Harp, V.V. Vesselinov / Advances in Water Resources 36 (2012) 64–74 69
er left with U = 1010, there is a bias for increased simulated draw-
down for locations with higher observed drawdown (lower ob-
served head). This is due to changes in heterogeneity patterns at
locations near the wells (i.e. simulating low permeability near
monitoring wells with high permeability in the ‘true’ heterogene-
ity). While all monitoring wells and the pumping well are
conditioned to the ‘true’ facies, it is possible to produce signifi-
cantly different heterogeneity near these locations. In the extreme



Fig. 6. Maps of hydrogeologic acceptance probability on the parameter space of geostatistical model parameters. Probabilities are estimated at the 95% confidence level for
interval lengths L of (a) 0.05, (b) 0.025, and (c) 0.01. Uc is 50 for all three cases.

Fig. 7. Maps of hydrogeologic acceptance probability on the parameter space of geostatistical model parameters. The effect of perceived conceptual model uncertainty are
demonstrated by presenting maps for Uc of (a) 40, (b) 60, and (c) 80. Probabilities are estimated at the 95% confidence level for an interval length L of 0.05.

Fig. 8. Facies probability maps for the high conductivity geologic unit (K1 = 10�2 m/s). Acceptance probabilities used to generate these maps were estimated with confidence
interval (a) 0.050, (b) 0.025, and (c) 0.010 with 95% confidence and Uc = 10.
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case (U = 3.27 � 105), the heterogeneity is so inconsistent with the
observed water levels that the majority of simulated values are less
than the observed values (greater simulated drawdown than
observed). The plots in Fig. 4 illustrate the analysis of the consis-
tency of flow simulations from a single realization to observations.
Such analyses form the basis for the estimation of acceptance
probability.

Fig. 5 presents acceptance metric values (Eq. (1)) for realizations
from three geostatistical models: (a) the geostatistical model used
to generate the ‘true’ realization ð�lx ¼ �ly ¼ 20 mÞ, (b) the
geostatistical model with the highest acceptance probability
ð�lx ¼ 10 m; �ly ¼ 10 mÞ, and (c) the lowest acceptance probability
ð�lx ¼ 10 m; �ly ¼ 50 mÞ. Each cross in Fig. 5 signifies the results of
one plot from Fig. 4.

For reference, a horizontal line is drawn through U = 50, repre-
senting an example value for Uc. This horizontal line denotes the
expert defined cutoff between acceptable and unacceptable real-
izations, separating the realizations into these two sets. A fuzzy
definition of acceptance would require a range of values of U
where the membership would transition monotonically from one
set to the other. The acceptance probability of the geostatistical
model is calculated by dividing the number of realizations in the
acceptable set (points below Uc presented in Fig. 5) by the total
number of realizations. The acceptance probabilities are (a) 0.25,



Fig. 9. Facies probability maps for the high conductivity geologic unit (K = 10�2

m/s). The plausibilities used to generate these maps were estimated with
confidence interval 0.050 with 95% confidence. The effect of conceptual model
uncertainty is evaluated using values of Uc of (a) 10, (b) 15, (c) 20, and (d) 50.
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(b) 0.35, and (c) 0.0 rounded to the specified resolution of the esti-
mation (L = 0.05) at 95% confidence.

As illustrated in Fig. 2, probability estimates closer to 0.5 will
require more samples n (Eq. (8)) for the same confidence level
and interval length, as apparent in the number of realizations pre-
sented in the plots in Fig. 5, where (b), with probability closest to
0.5, requires the most realizations at 1377, and (c), with probability
farthest from 0.5, requires the least at 292. Fig. 5 (a) requires 1120
realizations.

Fig. 6 presents acceptance probability maps on the geostatisti-
cal parameter space estimated at 95% confidence with Uc = 50.
Each ‘cell’ in the plots of Fig. 6 represents an estimation of the
acceptance probability of a parameter set illustrated in Fig. 5. Con-
fidence interval lengths (L) of (a) 0.05, (b) 0.025, and (c) 0.01 are
presented. Acceptance probability estimates are rounded to incre-
ments spaced at the confidence interval length to avoid presenting
greater resolution than the estimates warrant. This is evident as an
increase in the number of colors in moving from Fig. 6(a) (b) (c).
The geostatistical model (geostatistical parameter set) with the
highest acceptance probability is �lx ¼ �ly ¼ 10 m (Fig. 5 (b)), not
the model used to generate the ‘true’ realization, �lx ¼ �ly ¼ 20 m
(Fig. 5 (a)). This is not a surprising result, as the head observations
come from a single realization of this geostatistical model, and
should not be expected to uniquely characterize the hydraulic re-
sponse of the geostatistical model. In practice, this is the case as
well, where the head observations are produced by a single spatial
distribution of heterogeneity, where not only will the geostatistical
parameters be unknown, but the appropriate geostatistical frame-
work may be uncertain as well. It is therefore reasonable to expect
that the observed hydraulic response may be more consistent with
geostatistical models that are not the ‘true’ model. It is for this rea-
son that the identification of an optimal geostatistical model from
hydraulic observations is an ill-conceived strategy. This issue is cir-
cumvented in the current approach, as the analysis is based on the
premise that all acceptable realizations are equally acceptable,
irrespective of the magnitude of the estimated acceptance proba-
bility of their associated geostatistical model.

A similar presentation to Fig. 6 is made in Fig. 7, in this case
demonstrating the effect of the perceived conceptual model uncer-
tainty by modifying values of Uc ((a) 40, (b) 60, and (c) 80) holding
L = 0.05. Once again, the confidence level of the estimation is 95%.
By inspecting Fig. 7, it is apparent that increasing the perceived
conceptual model uncertainty (increasing Uc) increases the accep-
tance probability values of the matrix of geostatistical models as a
greater proportion of realizations become acceptable.

Facies probability maps generated from realizations collected
during acceptance probability estimation at three interval lengths
with a non-fuzzy definition of realization acceptance are presented
in Fig. 8. The facies probability represents the probability of the
existence of the high conductivity unit (K1 = 10�2 m/s) at a loca-
tion. Probabilities near 1.0 or 0.0 can be interpreted as locations
with high certainty of belonging to the high (K1) or low (K2) con-
ductivity geologic unit, respectively. Locations with probabilities
of 0.5 indicate that the geologic unit at that location is highly
uncertain (i.e. the least amount of information is available for these
locations). Complimentary information could be presented by
mapping the probability of the low conductivity unit alternatively.
The maps are developed using realizations from the union of
acceptable sets from a matrix of geostatistical parameters (identi-
cal to the matrix of parameter values presented in Fig. 6 (81
parameter sets)) with Uc = 10. The acceptance probabilities are
estimated within confidence interval lengths L of (a) 0.05, (b)
0.025, and (c) 0.01 at 95% confidence. The number of realizations
increases as L decreases, resulting in a smoothing effect of the
probability map. Comparisons can be made between these maps
and the ‘true’ hydrogeologic model in Fig. 3. These facies probabil-
ity maps, and those in the subsequent discussions, can be used to
site additional investigations by selecting locations that will reduce
the uncertainty of the heterogeneity (locations with facies proba-
bility near 0.5 in the current scenario).

Fig. 9 presents a similar analysis to Fig. 8, in this case increasing
Uc, effectively increasing the degree of uncertainty that the expert
perceives in the conceptual model. For reference, Figs. 8(a) and 9(a)
are the same. It is apparent that as Uc increases, indicating a great-
er level of epistemic uncertainty and that a greater number of real-
izations will be considered acceptable, the more that the
information is restricted to the conditioning points, with locations
far from the conditioning points having the greater uncertainty (fa-
cies probability �0.5).

Belief and plausibility maps generated from acceptable realiza-
tions collected during estimation of acceptance probability with a
fuzzy definition of realization acceptance are presented in Fig. 10
for various membership functions. Two cases are presented, both
starting with non-fuzzy acceptance metrics: (1) U1 = U2 = 10 and
(2) U1 = U2 = 20, demonstrating that the facies belief and plausibil-



Fig. 10. Facies belief and plausibility maps for various definitions of realization acceptance defined by U1 and U2 (refer to Eqs. (2) and (3)).
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ity maps are equal to the facies probability maps in these cases (re-
fer to Fig. 9 (a) and (c), respectively). Below the plots with non-fuz-
zy acceptance metrics are facies belief and plausibility maps with
increasing U2 maintaining the same value for U1. These plots indi-
cate the increasing gap between Pl(l;x) and Bel(l;x) as the uncer-
tainty in the definition of realization acceptance increases,
demonstrating how the increased epistemic uncertainty in the def-
inition of the acceptance metric is included in the analysis.
6. Conclusions

Accounting for the equifinality of solutions requires the inclusion
of all solutions deemed acceptable by their consistency with obser-
vations. In geostatistical models, this means that model ranking can
not be used to identify the ‘true’ model of statistical characteristics of
heterogeneity, as the possibility always exists that a model that pro-
duces few acceptable realizations may be the most similar to the
‘true’ heterogeneity. Based on the potentially extreme variability
of hydraulic responses from realizations from a single geostatistical
model demonstrated here, it is apparent that identification of a sin-
gle most likely geostatistical model may not improve hydrogeologic
predications or provide an appropriate uncertainty analysis. We
propose to develop uncertainty analyses including acceptable real-
izations from multiple geostatistical models. In this way, acceptable
features from the included geostatistical models from multiple geo-
statistical models, and potentially multiple geostatistical frame-
works, will be incorporated into a composite uncertainty analysis.
This approach provides the potential to identify features that are
not part of any of the single geostatistical models, but are present
in the composite of the acceptable realizations, providing for a more
comprehensive uncertainty analysis than the identification of the
most likely geostatistical model.

A non-fuzzy definition of acceptance will allow the calculation
of facies probability maps. A fuzzy definition of acceptance will
produce bounds on the facies probability map in the form of facies
belief and plausibility maps. The facies probability maps provide
indications of the information content of the available data and
provide guidance for the selection of the location of future investi-
gations intending to reduce uncertainty.

This paper has demonstrated that:

1. Geostatistically-equally-probable realizations from a geostatis-
tical model can produce extremely varied flow simulations,

2. Considering epistemic and aleatoric uncertainty, many geosta-
tistical models will produce acceptably consistent realizations
with respect to observations,

3. Acceptance probability estimation can be used to collect accept-
able realizations up to a specified confidence and interval
length. Varying the confidence level and/or interval length can
be used to obtain information at the level of detail and compu-
tational expense desired by increasing the precision of the
acceptance probability estimates.

4. Estimation of acceptance probability at a specified confidence
level and interval length can be preemptively terminated based
on the current estimate reducing the computational demand for
acceptance probabilities which deviate significantly from 0.5.

5. Expert opinion of epistemic uncertainty provides an appropri-
ate uncertainty in facies distribution (increasing Uc increases
the uncertainty in facies distribution as more realizations
become acceptable). This step in the approach has similar
implications as the selection of a likelihood function in a Bayes-
ian analysis, requiring expert judgment and/or evaluation;
however, with less restrictions and assumptions.

6. Imprecise (fuzzy) definitions of epistemic uncertainty can be
accounted for by utilizing DST, providing bounds of the facies
probability map in the form of facies belief and plausibility maps.
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Appendix A. Satisfaction of axiomatic properties of the derived
bpa, belief measure, and plausibility measure

We begin by demonstrating that the derived bpa (Eq. (13)),

mðl; xÞ ¼ 1
NA

XNA

i¼1

Il;iðxÞlAðUiÞ; ðA:1Þ

satisfies the axiomatic properties of a basic probability assignment,
defined here as

mð£Þ ¼ 0; ðA:2Þ
mðBÞP 0 B 2 PðXÞ; ðA:3ÞX
B2PðXÞ

mðBÞ ¼ 1; ðA:4Þ

where X is the universe of discourse (commonly referred to as the
frame of discernment in DST) and P(X) is the power set of X consist-
ing of singletons (i.e. single components of X) and collections of sin-
gletons [26]. Therefore, m does not adhere to the axioms of
probability, as it is defined on P(X), whereas probabilities must be
defined solely on X (i.e. singletons).

By inspecting Eq. (A.1), it is apparent that the properties defined
by Eqs. (A.2) and (A.3) are satisfied. The property defined by Eq.
(A.4) is also satisfied due to the assumption that the facies are
mutually-exclusive and exhaustively defined implicit in a Markov
chain or indicator geostatistical framework [9]. This implies that,
prior to analysis, the bpa that at least one of the facies exists at a
location (m(X ;x)) is equal to one. This is the case of total ignorance
with respect to the frame of discernment (i.e. m(X ;x) = 1 and
m(l ;x) = 0 for l = 1, . . . ,Nf, where Nf is the number of facies). During
the analysis, a portion of this evidence is shifted onto the single-
tons of the power set, reducing the initial uncertainty as informa-
tion is obtained through the acceptance probability estimation.
Therefore, the evidence that is not assigned to a singleton during
the analysis remains on X as

mðX; xÞ ¼ 1�
XNf

l¼1

mðl; xÞ; ðA:5Þ

indicating the remaining conflicting information. Rearranging Eq.
(A.5) demonstrates that the property defined in Eq. (A.4) is satisfied.

Next, we demonstrate that the derived belief measure
(Eq. (16)),

Belðl; xÞ ¼ mðl; xÞ ¼ 1
NA

XNA

i¼1

Il;iðxÞlAðUiÞ; ðA:6Þ

satisfies the axiomatic properties of a belief measure, defined here
as

Belð£Þ ¼ 0; ðA:7Þ
BelðXÞ ¼ 1 ðA:8Þ

and

BelðD1 [ D2 [ � � � [ DnÞP
X

j

BelðDjÞ �
X
j<k

BelðDj \ DkÞ þ � � �

þ ð�1Þnþ1BelðD1 \ D2 \ � � � \ DnÞ: ðA:9Þ

A fundamental property of belief measures can be derived by
substituting D = D1 and D ¼ D2ðD represents ‘‘not D’’) for n = 2 in
Eq. A.9 as

BelðDÞ þ BelðDÞ 6 1; ðA:10Þ

where D1 and D2 can represent the acceptable and unacceptable
sets of realizations, for example. It is apparent that Eq. (A.6) satisfies
the axiomatic properties of belief measure defined by Eqs. (A.7) and
(A.8) considering the arguments related to the properties of a bpa.

To demonstrate that the derived belief measure (Eq. (A.6)) sat-
isfies Eq. (A.10), consider that

Belð�l; xÞ ¼
XNf

m¼1jm–l

Belðm; xÞ ðA:11Þ

and

XNf

l¼1

Belðl; xÞ ¼
XNf

l¼1

1
NA

XNA

i¼1

Il;iðxÞlAðUiÞ
" #

6

XNf

l¼1

1
NA

XNA

i¼1

Il;iðxÞ
" #

¼ 1: ðA:12Þ

Therefore,

Belðl; xÞ þ Belð�l; xÞ ¼ Belðl; xÞ þ
XNf

m¼1jm–l

Belðm; xÞ

¼
XNf

l¼1

Belðl; xÞ 6 1 ðA:13Þ

in accordance with Eq. (A.10).
Last, we demonstrate that the derived plausibility measure (Eq.

(17)),

Plðl; xÞ ¼ 1� Belð�l; xÞ ðA:14Þ

satisfies the axiomatic properties of a plausibility measure, defined
here as

Plð£Þ ¼ 0; ðA:15Þ
PlðXÞ ¼ 1 ðA:16Þ

and

PlðD1 \ D2 \ � � � \ DnÞ 6
X

j

PlðDjÞ �
X
j<k

PlðDj [ DkÞ þ � � �

þ ð�1Þnþ1PlðD1 [ D2 [ � � � [ DnÞ: ðA:17Þ

A fundamental property of plausibility measures can be derived by
substituting D = D1 and D ¼ D2 for n = 2 in Eq. A.17 as

PlðDÞ þ PlðDÞP 1: ðA:18Þ

The derived plausibility measure (Eq. (A.14)) satisfies Eqs. (A.15)
and (A.16) as

Plð£; xÞ ¼ 1� Belð£; xÞ ¼ 1� BelðXÞ ¼ 0 ðA:19Þ

and

PlðX; xÞ ¼ 1� BelðX; xÞ ¼ 1� Belð£Þ ¼ 1; ðA:20Þ

respectively. Adherence of Eq. (A.14) to the axiomatic property de-
fined by Eq. (A.18) can be demonstrated considering Eq. (A.10) as

Plðl; xÞ þ Plð�l; xÞ ¼ 2� ðBelðl; xÞ þ Belð�l; xÞÞP 1: ðA:21Þ
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